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Abstract. We analyze the pion electromagnetic, charged-current, and πγ transition form factors at timelike
momentum transfers q, q2 = s ≤ 1.4 GeV2, using a dispersion approach. We discuss in detail the propagator
matrix of the photon–vector meson system and define certain reduced amplitudes, or vertex functions,
describing the coupling of this system to final states. We then apply the derived analytic expressions to the
analysis of the recent e+e− → π+π−, τ− → π−π0ντ , and e+e− → π0γ data. We find the reduced amplitudes
for the coupling of the photon and vector mesons to two pseudoscalars to be constant, independent of
s, in the range considered, indicating a “freezing” of the amplitudes for s ≤ 1 GeV. The fit to the form
factor data leads to the following values of the Breit–Wigner resonance masses mρ− = 775.3 ± 0.8 MeV,
mρ0 = 773.8 ± 0.6 MeV and mω = 782.43 ± 0.05 MeV, where the errors are only statistical.

1 Introduction

The pion elastic and transition form factors at timelike
momentum transfers provide an important source of in-
formation about the masses and coupling constants of the
vector meson resonances ρ, ω, φ, etc. However, a reliable
extraction of the resonance parameters from the experi-
mental data is a complicated problem. The reason is that
the direct QCD-based calculation of the form factors in
terms of the resonance parameters is not possible yet, and
hence one has to use approximate approaches. A typical
procedure of extracting the vector meson parameters is
as follows: One relies on some theoretical formula for the
form factor in terms of the vector meson masses and cou-
plings, and tries to extract their numerical values by fitting
the experimental data. Most of the approaches providing
theoretical inputs for the form factors in the region of vec-
tor meson resonances 0.7 to 1.2 GeV fall into the two big
classes: approaches based on the vector meson dominance
picture [1–6] and approaches based on the inclusion of
vector mesons into the chiral perturbation theory frame-
work [7–10].

No need to say that the extracted values of the meson
parameters depend on the theoretical models used in this
procedure; moreover, approximate formulas for the form
factors in terms of the meson parameters inevitably intro-
duce a systematic error which is extremely hard to control.
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Table 1. Values of the meson masses as quoted in the last
three editions of PDG [11,12]

1998 2000 2002
ρ0 770.0 ± 0.8 769.3 ± 0.8 771.1 ± 0.9
ω 781.94 ± 0.12 782.57 ± 0.12 782.57 ± 0.12

Neglecting systematic uncertainties may lead to contro-
versies in the determination of the resonance parameters.
To illustrate this statement, let us turn to Table 1 which
presents the vector meson masses as quoted in the last three
editions of the Particle Data Group [11,12]. One clearly sees
a very small error and relatively sizable “time-variations”
of the average values such that some of the results from
different editions are only marginally compatible with each
other within 3σ. Moreover, the value of the ρ-meson mass
mρ = 775.9±0.5 MeV as extracted from τ decays and e+e−
annihilation data is well above the value of the ρ-meson
mass as obtained by averaging all data [12].

The most natural explanation of this puzzle is that the
systematic errors due to reliance on theoretical models may
be underestimated. It is clear that a reliable extraction of
the resonance parameters may only be reached if as broad as
possible a set of data and reactions is used for the analysis.
Comparison with the experiment serves as a test and to
some extent a justification of the theoretical models and
approximations employed.

The data on the e+e− → π+π−, τ− → π−π0ντ , and
e+e− → π0γ reactions offer a goodpossibility for extracting
the ρ and ω masses and coupling constants and testing
various theoretical models.
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As a first step we discuss our dispersion-theoretical
framework where we start from the photon γ and the vector
meson V (V = ρ, ω, . . .) fields and identify the relevant am-
plitudes and couplings in a model-independent way. Then
we introduce our model which takes into account only the
most important contributions to the absorptive parts in
the dispersion relations. In essence,
(i) we keep only the contributions of the ππ and KK in-
termediate states and
(ii) assume certain reduced amplitudes to be independent
of the CM energy in the resonance region. Our approach
does not use any specific effective Lagrangian or other ap-
proximation scheme, like the 1/Nc expansion. However,
rigorous theoretical results which are known or may be-
come available in the future, may be easily implemented
in our framework as improved representations for the re-
duced amplitudes.

In the second step we apply our formalism to per-
form a simultaneous analysis of the pion electromagnetic,
charged-current, and πγ form factors. We obtain analytic
expressions for the form factors in terms of the resonance
parameters, paying special attention to the existing ambi-
guities in their definitions. We then apply our results to
the Fπ, F+

π , and Fγπ data and extract masses and cou-
plings of the vector mesons. In this paper we consider only
the most recent data [13–16] for these form factors in the
range 2mπ ≤ √

s ≤ 1.2 GeV. We shall demonstrate that
these data are well described by our model allowing for a
reliable extraction of the vector meson parameters. A sys-
tematic analysis of all available form factor data using our
model is left for future work. Then also relative normal-
ization uncertainties between various data sets will have
to be considered.

This paper is organized as follows: Sect. 2 gives defini-
tions and summarizes important rigorous results forFπ and
Fγπ. A general treatment of the vector meson–photon mix-
ing in the framework of the dispersion approach is given
in Sect. 3. Our model is formulated in Sect. 4. In Sect. 5
numerical results are presented. Conclusions are given in
Sect. 6. Appendices contain the necessary technical details.

2 The pion electromagnetic, weak,
and πγ form factors

2.1 The electromagnetic form factor

The pion electromagnetic form factor is defined by

〈π+(p′)|Jµ(0)|π+(p)〉 = e(p′ + p)µFπ(q2),

q = p′ − p, (1)

for q2 < 0, and by

〈π+(p′)π−(p)|Jµ(0)|0〉 = e(p′ − p)µFπ(q2),

q = p′ + p, (2)

for q2 > 0. Here Jµ is the electromagnetic current and
e =

√
4παe.m.. The form factor is normalized as Fπ(0) = 1.

As a function of the complex variable s = q2, the form
factor Fπ(s) has a cut in the complex s-plane starting at
the two-pion threshold s = 4m2

π which corresponds to two-
pion intermediate states. There are also cuts related toKK̄
intermediate states and multi-meson states (3π, etc.). The
form factor in the timelike region (s > 0) is

Fπ(s+ iε) = |Fπ(s)|eiδπ(s), (3)

where δπ(s) is the phase. For the theoretical description of
the form factor in different regions of momentum transfers,
different theoretical approaches are used.

At large spacelike momentum transfers, −q2 → ∞,
perturbative QCD (pQCD) gives rigorous predictions for
the asymptotic behaviour of the form factor [17]

Fπ(q2) ∼ 8πf2
παs(−q2)
−q2 , (4)

where αs is the QCD coupling parameter and fπ = 130.7±
0.4 MeV [12] is the pion decay constant defined by the re-
lation

〈0|d̄(0)γµγ5u(0)|π+(p)〉 = ipµfπ. (5)

As the spacelike momentum transfer becomes smaller, the
form factor turns out to be the result of the interplay of
perturbative and non-perturbative QCD effects, with a
strong evidence that non-perturbative QCD effects domi-
nate in the region 0 ≤ −q2 ≤ 10 GeV2 [18,19]. The picture
based on the concept of constituent quarks which effec-
tively account for non-perturbative dynamics has proven
to be efficient for the description of the form factor in this
region (see for instance [20]).

At large timelikemomentumtransfers, s ≥ 10–20 GeV2,
Fπ(s) can be obtained from the analytic continuation of the
pQCD formula (4). At small timelike momentum transfers
the situation is more complicated since there dynamical
details of the confinement mechanism are crucial. Quarks
and gluons are no longer the degrees of freedom of QCD
leading to a simple description of the form factor. At time-
like momentum transfers we are essentially in the region of
hadronic singularities and typically one relies on methods
based on hadronic degrees of freedom. In the region of inter-
est to us here, q2 = 0–1.5 GeV2, the lightest pseudoscalar
mesons are most important. There are many approaches to
understand the behaviour of the pion form factor at these
timelike momentum transfers.

A popular approach is based on the vector meson domi-
nance (VMD) model [1]. In the simplest version one consid-
ers just the contribution of the ρ-meson pole, which in com-
bination with the normalization condition Fπ(s = 0) = 1
leads to

Fπ(s) =
m2

ρ

m2
ρ − s

. (6)

This simple formula works with a reasonable accuracy both
for small spacelike momentum transfers and timelike mo-
mentum transfers below the ππ threshold: −1 GeV2 ≤ s ≤
4m2

π. For s near the ππ threshold one should take into
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account effects of the virtual pions. In this region, the mo-
menta of the intermediate pions are small and a consistent
description of the form factor is provided by chiral pertur-
bation theory (ChPT) [7], the effective theory for QCD at
low energies.

For higher s, in the region of ρ and ω resonances, a
similar rigorous treatment of the form factor is still lacking,
and one has to rely on model considerations. Gounaris
and Sakurai (GS) [3] obtained the expression for the ρ-
meson contribution to the pion form factor which takes
into account the ρ-meson finite width due to the virtual
pions. The GS form factor may be written in the form

Fπ(s) =
m2

ρ −BGS
ρρ (0)

m2
ρ − s−BGS

ρρ (s)
. (7)

The function BGS
ρρ (s) corresponds to the two-pion loop

diagram, but one can easily add the KK̄ loop too; see Ap-
pendix B. The corresponding Feynman integral is linearly
divergent, but its imaginary part is defined in a unique way.
The real part may then be reconstructed by a doubly- sub-
tracted dispersion representation. The Gounaris-Sakurai
formula corresponds to the following prescription of fixing
the subtraction constants

Re BGS
ρρ (s)|s=m2

ρ
= 0,

d
ds

Re BGS
ρρ (s)|s=m2

ρ
= 0. (8)

The phase of the GS form factor

tan δ(s) =
ImBGS

ρρ (s)
m2

ρ − s− ReBGS
ρρ (s)

(9)

agrees well with the experimental data in the region 4m2
π <

s < 0.9 GeV2.
The Gounaris–Sakurai form factor (7) satisfies the re-

lation Fπ(0) = 1. But it turns out that it does not have
enough flexibility to give at the same time a good descrip-
tion at the peak of the ρ resonance; see Appendix B.

Near the ρ-meson peak the ρ-meson contribution to the
pion form factor can be expressed in terms of the γ → ρ →
ππ matrix element as follows:

Fπ(s) =
1
2gρ→ππfρ mρ

m2
ρ − s−BGS

ρρ (s)
. (10)

Here gρππ and fρ are defined according to

〈π+(p′)π−(p)|T |ρ(q, ε)〉 = −1
2
gρ→ππ εµ · (p′ − p)µ, (11)

〈0|Jµ(0)|ρ0(q, ε)〉 = efρmρεµ, (12)

where εµ is the ρ-meson polarization and q is the 4-mo-
mentum vector. Now |Fπ(s)| from (10) describes well the
data for s 	 m2

ρ. But extrapolating (10) to s = 0 violates
the normalization condition Fπ(0) = 1 that is unaccept-
able.

Note that the definitions of gρ→ππ and fρ in (12) are not
really appropriate since they are based on ρ-meson states.
But the ρ meson is a resonance and has no asymptotic

states. Our precise definitions of gρ→ππ and fρ will be
given below in Sect. 4.

Thus, neither (7) nor (10) are suitable for the analy-
sis of the form factor data for all s = 0–1.5 GeV2. There
were many attempts to modify the vector meson domi-
nance or to use related approaches in order to bring the
results on the pion form factor in agreement with the data
(see [5,6,9] and the papers quoted therein). The pion form
factor in the region s = 0–1.5 GeV2 is one of the main
sources for obtaining the masses and coupling constants of
vector mesons. However, with different assumptions on the
form of the vector-resonance contribution to the pion form
factor one obtains different values of masses and couplings.
Therefore a consistent description of the pion form factor
in this region in terms of the low-lying mesons (π,K, ρ, ω)
is crucial for extracting reliable values of these parame-
ters. Interesting results have been obtained by the authors
of [5] who noticed that an effective momentum-dependent
ργ coupling appears in the framework of the effective La-
grangian approach. This momentum-dependent ργ cou-
pling also improves the description of the pion form factor
at small spacelike momentum transfers.

Clearly, to achieve a realistic description of the form
factor, one has to account for vector meson finite-width and
mixing effects. This may be done in a consistent way within
a dispersion approach and will be the subject of Sect. 3.

2.2 The weak form factor

The π− → π0 weak transition form factors parameterize
the charged-current transition amplitude as follows:

〈π+(p)π0(p′)|ū(0)γµd(0)|0〉
=

√
2F+

π (q2)(p′ − p)µ +
√

2F−
π (q2)qµ. (13)

In the limit of the exact isospin symmetry we have F−
π = 0

and F+
π = Fπ|isovector. In practice we expect that the elec-

tromagnetic form factor Fπ should be close to F+
π for

0 ≤ q2 ≤ 1 GeV2 except for the region of the ω resonance.
The form factor Fπ contains an important isospin-violating
contribution of the ω resonance, whereas there is no con-
tribution analogous to ω in F+

π .

2.3 The πγ form factor

We shall be interested in the process e+e− → γ∗ → π0γ,
where one of the photons is real and the other is virtual. The
form factor Fγπ relevant for this process is defined [19,21]
according to

〈π0(p)γ(q′, ε)|Jµ(0)|0〉 = e2εαβµνε
∗νqαq′βFγπ(q2),

q = p+ q′. (14)

In terms of this form factor the e+e− → π0γ cross
section reads

σe+e−→π0γ(q2) =
2
3

π2α3
e.m.

(
1 − m2

π

q2

)3

|Fγπ(q2)|2. (15)
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In the chiral limit, m2
π = 0, the value of the form factor

for q2 = 0 is fixed by the Adler–Bell–Jackiw anomaly [22]:

Fγπ(0)|m2
π=0 =

1
2
√

2π2fπ

. (16)

In reality the pion is not massless, but still the anomaly
provides a very good description of the observed π0 → γγ
decay rate.

We shall therefore use the value (16) also for the physical
pion in order to fix the form factor Fγπ(0) in our analysis.

In the region of large spacelike momentum transfer q,
the form factor canbe calculated frompQCDwith the result

Fγπ(q2) ∼
√

2fπ

−q2 . (17)

Brodsky and Lepage [23] proposed a simple formula,

Fγπ(q2) =
√

2fπ

4π2f2
π − q2

, (18)

which interpolates between q2 = 0 and q2 → −∞ and
works well for all q2 < 0. This formula may be written as

Fγπ(q2) =
√

2fπ

M2
Res − q2

, (19)

withMRes = 2πfπ = 880 MeV, not too far from the masses
of ρ and ω which give the dominant resonance contribution
to the form factor.

To describe the form factor in the region 0 < q2 ≤
1.5 GeV2, we should again use the meson degrees of free-
dom. For a realistic description of the form factors we must
take into account finite-width and meson mixing effects.

3 Mixing of vector mesons:
Propagator matrix and vertex functions

In this section we present model-independent considera-
tions on the mixing of the photon with vector mesons.

Since vector mesons are unstable particles, one of the
possibilities is to start with hypothetical stable states,
which then get a width by inclusion of some interactions.
This is an inherently perturbative picture which emerges
for instance when the 1/Nc expansion is used.

We shall avoid such a perturbative approach and in-
stead start with properly defined renormalized field opera-
tors with the quantum numbers of the vector mesons we are
interested in. Clearly, such field operators can be defined
in the framework of QCD. As the second step, we shall an-
alyze the propagator matrix describing the mixing of these
vector meson fields with the photon field. Then, we define
certain transition amplitudes (or vertex functions) which
are one-particle irreducible in the s channel, and establish
the connection between these vertex functions and the ex-
perimentally measured form factors. These considerations
are fully general and do not include any model assump-
tions. As the next step our model is formulated making

certain assumptions for these vertex functions. This pro-
cedure is similar to the one used in [24] in the discussion
of the γ–J/ψ mixing.

Let us consider the photon field Aµ(x) and a set of her-
mitian neutral vector meson fields V (j)

µ (x) (j = 2, . . . , n).
For convenience of notation we set V (1)

µ (x) = Aµ(x).
ThefieldsV (j)

µ (x) (j = 1, . . . , n) have the samequantum
numbers and therefore will have a n×n propagator matrix
describing their mixing:

∆(j,k)
µν (q) =

1
i

∫
d4x eiqx〈0|T ∗{V (j)

µ (x)V (k)
ν (0)}|0〉. (20)

Here T ∗ is the covariant version of the T product; see for
instance [25]. Using a covariant gauge for the photon, we
can separate ∆(j,k)

µν into transverse and longitudinal parts
as follows:

∆(j,k)
µν =

(
−gµν +

qµqν
q2 + iε

)
∆

(j,k)
T (q2)

− qµqν
q2 + iε

∆
(j,k)
L (q2). (21)

The matrices

∆T,L(q2) =
(
∆

(j,k)
T,L (q2)

)
(22)

are analytic in the complex q2-plane with cuts on the posi-
tive real axis. We shall always work to leading order in the
electromagnetic interaction. Then the leftmost cut starts
at q2 = 4m2

π, the two-pion threshold. Similarly, the trans-
verse and the longitudinal structures can be isolated in the
inverse propagator matrix

(
∆−1(q)

)(j,k)
µν

=
(

−gµν +
qµqν
q2 + iε

)(
∆−1

T (q2)
)(j,k)

− qµqν
q2 + iε

(
∆−1

L (q2)
)(j,k)

. (23)

The propagator matrix satisfies several general relations.
(1) Translation invariance of the vacuum gives

∆(j,k)
µν (q) = ∆(k,j)

νµ (−q). (24)

(2) CPT -invariance gives

∆(j,k)
µν (q) = ∆(j,k)

µν (−q). (25)

(3) T -invariance of strong and electromagnetic interac-
tions gives

∆(j,k)
µν (q0,q) = ∆(j,k)µν(−q0,q). (26)

From (24) we find that the matrices∆T,L must be sym-
metric: (

∆T,L(q2)
)T

= ∆T,L(q2), (27)
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whereas (25) and (26) are satisfied automatically and give
no restrictions.

Using next the hermiticity of the fields V (j)
µ (x) we get

the unitarity relation for the propagator matrix

∆(j,k)
µν (q) −

(
∆(k,j)

νµ (q)
)∗

=
1
i

∫
d4x eiqx (28)

×〈0|
{
V (j)

µ (x)V (k)
ν (0) + V (k)

ν (0)V (j)
µ (x)

}
|0〉

=
1
i

∑
X

{
(2π)4δ(4)(q − pX)

×〈0|V (j)
µ (0)|X(pX)〉〈X(pX)|V (k)

ν (0)|0〉
+(2π)4δ(4)(q + pX)

× 〈0|V (k)
ν (0)|X(pX)〉〈X(pX)|V (j)

µ (0)|0〉
}
.

Here we have inserted a complete set of asymptotic (in
strong interactions) states |X(pX)〉, where pX is the four-
momentum.Note that the states |X(pX)〉 contain pions and
kaons, but no ρ or ω mesons, since the latter are unstable
and thus have no asymptotic states.

Let us now define for all states |X(pX)〉 the reduced,
or amputated, matrix elements 〈X(pX)||V (j)

µ ||0〉 by taking
out of 〈X(pX)|V (j)

µ |0〉 all s channel V -propagator terms:

〈X(pX)||V (j)
µ ||0〉 = 〈X(pX)|V (i)ν |0〉 (∆−1(pX)

)(i,j)
νµ

.(29)

Here and in the following we use the summation convention.
The inverse of (29) reads

〈X(pX)|V (j)
µ |0〉 = 〈X(pX)||V (i)ν ||0〉∆(i,j)

νµ (pX). (30)

The reduced matrix elements, or vertex functions,

〈X(pX)||V (j)
µ ||0〉

are one-V irreducible in the s channel.
It is convenient to define the transverse and the longi-

tudinal components of the vertex functions

〈X(pX)||V (j)
Tµ ||0〉

= 〈X(pX)||V (j)ν ||0〉
(
gνµ − (pX)ν(pX)µ

(pX)2

)
,

〈X(pX)||V (j)
L ||0〉 = 〈X(pX)||V (j)ν ||0〉 (pX)ν√

(pX)2
. (31)

Now insert (30) into the unitarity relation (28). Considering
first (28) for q0 > 0, we obtain

∆(j,k)
µν (q) −

(
∆(k,j)

νµ (q)
)∗

=

− i
∑
X

(2π)4δ(4)(q − pX)
(
∆

(j′,j)
µ′µ

)∗
〈X(pX)||V (j′)µ′ ||0〉∗

×〈X(pX)||V (k′)ν′ ||0〉∆(k′,k)
ν′ν . (32)

Multiplying (32) by
(
∆−1

)† from the left and by∆−1 from
the right we come to the unitarity relation for the inverse
propagator (23):

1
2i

{
∆−1

T,L(q2) −
(
∆−1

T,L(q2)
)†}

= DT,L(q2), (33)

where the discontinuity matrices DT,L(q2) are given by

D
(j,k)
T (q2) = −1

6

∑
X

(2π)4δ(4)(q − pX) (34)

×〈X(pX)||V (j)
Tλ ||0〉∗〈X(pX)||V (k)λ

T ||0〉,

D
(j,k)
L (q2) = −1

2

∑
X

(2π)4δ(4)(q − pX) (35)

×〈X(pX)||V (j)
L ||0〉∗〈X(pX)||V (k)

L ||0〉.
The discontinuity matrices satisfy the relations

DT(q2) =
(
DT(q2)

)T
=
(
DT(q2)

)†
,

DT(q2) = 0, for q2 < 4m2
π,

DT(q2) ≥ 0, for q2 ≥ 4m2
π, (36)

and

DL(q2) =
(
DL(q2)

)T
=
(
DL(q2)

)†
,

DL(q2) = 0, for q2 < 4m2
π,

DL(q2) ≤ 0, for q2 ≥ 4m2
π. (37)

Considering in (28) the case q0 < 0, inserting (30) and
using (24) we find exactly the same relations (33)– (37).

In our applications the longitudinal part ∆L(q2) plays
no role, so we concentrate on the transverse part ∆T(q2)
in the following.

The analytic properties of ∆−1
T (q2) allow us to write a

dispersion relation for it, which we assume to be convergent
with two subtractions:

∆−1
T (q2) = −M2 +Kq2 + (q2)2

1
π

∞∫
4m2

π

ds
DT(s)

s2(s− q2 − iε)
.

(38)

Here the subtraction terms M2 and K have to be constant
real symmetric matrices

M2 = (M2)T = (M2)∗, K = KT = K∗. (39)

This is as far as we can come with a general analysis of the
propagator matrix.

In the next section we shall analyze the amplitude
〈X(pX)|Aµ|0〉 for the electromagnetic field and the state
|X(pX)〉 being the ππ state, which gives the pion form
factor. Equation (30) with j = 1 represents this amplitude
in terms of the vertex functions 〈X(pX)||V (i)

µ ||0〉 and the
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propagator matrix ∆µν for which we have the dispersion
representation following from (38).

The merit of the representation (30) is that different
types of singularities are isolated in different quantities:
the propagator matrix contains the resonance poles which
lead to “fast” variations of the form factors in the reso-
nance region; the reduced amplitudes are free from these
singularities and therefore represent slowly varying func-
tions in the resonance region. To go further with the form
factors we need some dynamical inputs for the vertex func-
tions 〈X(pX)||V (j)µ||0〉 and for the matrices M2 and K;
see Sect. 4.

Before going to the details of the model, note that we
are free to change the basis for the fields. Defining new fields

Ṽ (j)
µ (x) = Cjk V

(k)
µ (x), (40)

with C = (Cjk) a real non-singular n× n matrix,1 we get
the propagator matrix of the new fields:

∆̃µν(q) = C∆µν(q)CT. (41)

This leads to

∆̃−1
T,L(q2) =

(
C−1)T∆−1

T,L(q2)C−1, (42)

〈X(pX)||Ṽ (j)
µ ||0〉 = 〈X(pX)||V (k)

µ ||0〉C−1
kj . (43)

The freedom of the field redefinition (40) can and will be
used to impose certain constraints on the matricesM2 and
K in (38). If K is a positive-definite matrix – as it should,
from the positivity of the metric for physical states in the
Hilbert space – we can, for instance, diagonalizeK andM2

simultaneously by a transformation (40). The procedure
to achieve this is completely analogous to the introduction
of normal coordinates in the problem of small oscillations
around a stable minimum of the potential in mechanics
(see for instance [30]).

We should, however, be careful with redefinitions of the
photon field V (1)

µ = Aµ. A redefined photon field containing
components proportional to the strong interaction vector
fields V (j)

µ with j > 1 will induce a direct quark–lepton cou-
pling. We think this is unacceptable. The conditions which
allow one to avoid this and to guarantee the massless pho-
ton and the correct charge normalization are summarized
in Appendix A and lead to

M2
1j = 0, j = 1, . . . , n, (44)

K11 = 1. (45)

1 In field theory we have also the freedom to make more
complicated redefinitions of the fields, for instance

Ṽµ(x) = (1 + c ∂2)Vµ(x), c = const.

Such transformations will change the q2 behavior of the prop-
agators and the p2

X behavior of the vertex functions. In the
present article we will not explore further the possibility of such
field redefinitions.

4 The γ–ρ–ω system

4.1 The model

We now apply the general considerations of the previous
section to the system containing the photon field and the
vector meson ρ and ω fields,

V (1)
µ (x) = Aµ(x),

V (2)
µ (x) = ρµ(x),

V (3)
µ (x) = ωµ(x). (46)

We suppose the field ρµ to be purely isovector, and ωµ to be
purely isoscalar. The electromagnetic coupling and isospin
breaking from different up and down quark masses in QCD
will introduce non-diagonal terms in the propagatormatrix.
In the following we will frequently use the indices γ, ρ, and
ω instead of 1, 2, 3.

The 3 × 3 matrix M2 of (38) and (39) for our system
has to satisfy (44). By a linear transformation (40), but
involving only the ρ and ω fields, we can makeM2 diagonal.

At this stage we define the ρ and ω mass squared pa-
rameters m2

ρ and m2
ω as zero points of the real parts of the

diagonal terms of the inverse propagator matrix; that is,
by the relations

Re
(
∆−1

T

)(ρ,ρ)
(m2

ρ) = 0, Re
(
∆−1

T

)(ω,ω)
(m2

ω) = 0.(47)

Then we choose the normalization of the fields ρµ and ωµ

in such a way that the matrix M2 has the form

M2 =


0 0 0

0 m2
ρ 0

0 0 m2
ω


 . (48)

To calculate the dispersive part of the inverse propa-
gator, we must restrict the set of the intermediate states
|X(pX)〉 to be included in the unitarity relation (32), and
parameterize the reduced amplitudes of the fields V (j)

µ be-
tween these states and the vacuum.
Assumption 1. As the intermediate states |X(pX)〉 in the
dispersion relation (38) with DT given by (35) we shall
consider only the π+π−, 3π, K+K−, and K0K̄0 states.

For the π+π− and KK states we have

〈π+(k1)π−(k2)||V (j)
Tµ ||0〉 = g(j)

ππ (k1 − k2)µ,

〈K+(k1)K−(k2)||V (j)
Tµ ||0〉 = g

(j)
KK(k1 − k2)µ, (49)

where g(j)
ππ and g(j)

KK are in general (slowly varying) functions
of (k1 + k2)2.
Assumption 2. In the region of interest we neglect the
dependence of g(j)

ππ and g(j)
KK on (k1 + k2)2 and assume all

g(j) to be real constants

g(1)
ππ = e, g(2)

ππ =
1
2
gρ→ππ, g(3)

ππ =
1
2
gω→ππ, (50)
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and similarly for the KK intermediate states

g
(1)
K+K− = e, g

(1)
K0K̄0 = 0,

g
(2)
K+K− = −g(2)

K0K̄0 =
1
2
gρ→KK ,

g
(3)
K+K− = g

(3)
K0K̄0 =

1
2
gω→KK . (51)

Here g(1)
ππ = g

(1)
K+K− = e and g

(1)
K0K̄0 = 0 as required by

the charge normalization of the π+, K+ and K0; see Ap-
pendix C.

The decays ρ → KK̄ and ω → KK̄ are forbidden kine-
matically at the ρ andω peaks. This makes a direct determi-
nation of the corresponding coupling constants gρ→KK and
gω→KK difficult. Therefore we use as additional theoretical
input the relations following from the approximate SU(3)
flavor symmetry of strong interactions and ideal mixing of
the vector mesons:

gρ→KK = gω→KK =
1
2
gρ→ππ. (52)

In this paper we do not analyze the 3π decays in detail.
In the unitarity relation (32) and (33) the 3π intermediate
states produce the width of the ω, Γω, which is one of the
fitting parameters.

We now have to specify the matrix K in (38). The
explicit form of the matrix K is discussed in Appendix B,
and herewe present the final form for the inverse propagator
matrix in our model:

∆−1
T (s) = (53)




s e
fρ

mρ
s + Bγρ(s) e fω

mω
s + Bγω(s)

e
fρ

mρ
s + Bγρ(s) −m2

ρ + s + Bρρ(s) s bρω + Bρω(s)

e fω
mω

s + Bγω(s) s bρω + Bρω(s) −m2
ω + s + Bωω(s)


 .

The functionsBij are constructedby the doubly-subtracted
dispersion integrals (38) corresponding to the pion and
kaon contributions and include also the relevant subtraction
terms defined such that

Bij(s = 0) = 0,

ReBρρ(m2
ρ) = ReBγρ(m2

ρ) = ReBρω(m2
ρ) = 0,

ReBωω(m2
ω) = ReBγω(m2

ω) = 0. (54)

For the functions Bij defined according to the conditions
(54), the dimensionful constants fρ and fω correspond to
our precise definitions of the leptonic decay constants of
the vector mesons. The detailed formulas for Bij are given
in Appendix B.

The intermediateπγ states donot contribute to the form
factors to first order in the e.m. coupling. Nevertheless, we
need the reduced πγ amplitudes for the description of the
πγ transition form factor. The reduced πγ amplitudes have
the form

〈π(k1)γ(k2, ε)||V (j)
µ (0)||0〉 = eεαβµνε

∗νkα
1 k

β
2 g

(j)
γπ , (55)

where g(j)
γπ in general depend on (k1 + k2)2. We assume

the g
(j)
γπ to be constant as we did for the ππ and KK̄

couplings. Then g(1)
γπ is determined from the anomaly (see

Appendix C)

g(1)
γπ = eFγπ(0) = e

1
2
√

2π2fπ

. (56)

The two additional dimensionless parameters gρ→γπ =
mρ g

(2)
γπ and gω→γπ = mω g

(3)
γπ are assumed to be real.

Let us summarize the parameters of our model. These
are
(1) the Breit–Wigner masses of the vector mesons, that is
mρ and mω;
(2) the decay constants fρ, fω;
(3) the mixing parameter bρω;
(4) the couplings of the vector mesons ρ and ω to two pions
gρ→ππ, gω→ππ;
(5) the width of the ω meson Γω, and
(6) the πγ couplings of the vector mesons gρ→πγ and gω→πγ .

Values for these parameters can be found by the fit to
the available form factor data. However, it turned out that
the parameters fω and Γω cannot be well determined in this
way from the reactions under discussion. The right place
to extract these parameters from the experimental data is
the reaction e+e− → γ∗ → 3π, where the contribution of ω
dominates. We leave a study of this reaction for a separate
paper. Here we fix fω and Γω to the PDG values, and leave
only the remaining parameters from the list above free in
the fits.

Clearly, the inclusion of higher resonanceswith the same
quantum numbers in the mixing scheme is straightforward.

4.2 The form factors

The calculation of the form factors is now straightforward:
we must reconstruct the propagator matrix from its inverse,
and then calculate the amplitude 〈X|Aµ|0〉 from (30) for the
relevant final states. Finally we have to take into account
that the amplitude of the e.m. current 〈X(q)|Jµ|0〉 is related
to the amplitude of the electromagnetic field as

〈X(q)|Jµ|0〉 =
(−gµνq

2 + qµqν
) 〈X(q)|Aν |0〉. (57)

For the pion form factor the final state is the ππ state, and
for the πγ form factor it is the πγ state. Since we work to
first order in the e.m. coupling, the set of the intermediate
states is the same in both cases. In the model described
above it includes the ππ, 3π, and KK intermediate states,
and we use (49) and (55) for the vertex functions. To first
order in the electromagnetic coupling the expressions for
the pion elastic and the πγ form factors obtained by the
procedure described above may be written in a simple form
(see Appendix C)

Fπ(s) = 1 − sGT
V →ππ∆̃(s)Gγ→V , (58)

Fγπ(s) = Fγπ(0) − sGT
V →πγ∆̃(s)Gγ→V , (59)
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with Fγπ(0) given by (56). The propagator matrix ∆̃ here
is the inverse of the vector meson block of the matrix ∆−1

T ,
see (53):

∆̃−1 =

(
−m2

ρ + s+Bρρ(s) s bρω +Bρω(s)
s bρω +Bρω(s) −m2

ω + s+Bωω(s)

)
(60)

and

GV →ππ =
( 1

2gρ→ππ
1
2gω→ππ

)
,

GV →πγ =

(
gρ→πγ

mρ
gω→πγ

mω

)
,

Gγ→V =

(
fρ

mρ
+ Bγρ

e s
fω

mω
+ Bγω

e s

)
. (61)

In the case of the charged-current form factor F+
π (13)

describing the π− → π0 transition, the ω contribution is
absent so we find from (134) of Appendix C

F+
π (s) =

m2
ρ − s+ 1

2gρ→ππ
fρs
mρ

m2
ρ − s−Bρρ(s)

. (62)

Note that in the expressions for the pion electromagnetic
and πγ form factors (58) and (59), the parameters mρ and
fρ are those of the ρ0 meson, whereas in the formula for
the charged-current form factor (62) the parameters refer
to the ρ− meson.

The expression (62) can be written in the “usual” vector
meson dominance form (10)

F+
π (s) =

1
2gρ→ππf

eff
ρ (s)mρ

m2
ρ − s−Bρρ(s)

, (63)

in terms of an effective s-dependent γρ coupling

f eff
ρ (s) = fρ

s

m2
ρ

+
2(m2

ρ − s)
gρ→ππmρ

. (64)

In this way we can make contact with the results of [5]
where an s-dependent γρ coupling is defined in an effective
Lagrangian approach.

We use the expressions (58), (59) and (62) for the
numerical analysis of the data for the pion electromag-
netic, charged-current, and πγ transition form factors in
the next section.

5 Numerical results

We analyze the recent data on the pion electromagnetic
form factorFπ (2), the charged-current form factorF+

π (13),
and the Fγπ form factor (14) in the region

√
s = 0–1.2 GeV

using the formulae (58), (59), and (62), respectively. We
take into account that the pion electromagnetic form factor

Fπ and the πγ transition form factor Fγπ contain contri-
butions of the neutral ρ0 and ω resonances, whereas the
charged-current form factor F+

π contains the contribution
of the ρ− meson. Since we consider the isospin-violating
ρ0–ω mixing effects, we do not assume the parameters of
the charged and the neutral ρ mesons to be equal to each
other. We therefore fit the data for the Fπ and Fγπ form
factors and extract in this way the ω and ρ0 parameters.
We use the recent SND data [16] for the form factor Fγπ

and the recent update [14] of the CMD-2 data [15] for Fπ.
We also include the available data on the phase of the
electromagnetic form factor [27].

We separately fit the form factor F+
π and extract the

ρ− parameters from the CLEO data [13].
We perform different fitting procedures explained be-

low. The fitted values of our parameters are given in Ta-
bles 2, 3 and 4.

Table 2. Parameters of the resonances as found by the fit to
the form factors in the region

√
s < 0.9 GeV within the γ–ρ–ω

mixing scheme (Fit I). Higher resonances are not included. The
PDG value for fω is used. Fit to Fπ and Fγπ: χ2/DOF = 75/74.
Fit to the charged-current form factor F+

π : χ2/DOF = 11/23.
The ρω mixing parameter has the value bρω = (3.5 ± 0.6)10−3

Res. mV , MeV fV , MeV gV →πγ gV →ππ

ρ− 775.5 ± 0.4 152.5 ± 0.33 − 11.52 ± 0.04
ρ0 773.6 ± 0.5 154.1 ± 0.67 0.60 ± 0.06 11.43 ± 0.04
ω 782.42 ± 0.04 45.3 ± 0.9 1.79 ± 0.09 −0.27± 0.13

Table 3. Parameters of the resonances as found by the fit
to the form factors in the region

√
s < 0.9 GeV (Fit II). The

γ–ρ–ω mixing scheme with addition of the ρ′ = ρ(1450) is
employed. The PDG values for fω and mρ′ are used. Fit to
Fπ and Fγπ: χ2/DOF = 68/72. Fit to F+

π : χ2/DOF = 11/21.
The parameters of ρ′ cannot be determined by this fit. The ρω
mixing parameter has the value bρω = (3.7 ± 0.6)10−3

Res. mV , MeV fV , MeV gV →πγ gV →ππ

ρ− 775.3 ± 0.8 152.4 ± 0.4 − 11.50 ± 0.05
ρ0 773.8 ± 0.6 155.3 ± 3.2 0.61 ± 0.06 11.53 ± 0.10
ω 782.43 ± 0.05 45.3 ± 0.9 1.76 ± 0.09 −0.31 ± 0.10
ρ′ 1465 ± 25 − − −

Table 4. Fit to the data for
√

s ≤ 1.2 GeV (Fit III), where ρ, ω,
ρ′ = ρ(1450), and ρ′′ = ρ(1700) are taken into account. Fit to
Fπ and Fγπ: χ2/DOF = 72/89. Fit to F+

π : χ2/DOF = 13/27.
The extracted ρ and ω couplings and masses are very stable with
respect to inclusion/exclusion of ρ′′. The couplings of ρ′ and ρ′′

correlate very strongly and cannot be reliably determined by this
fit. The ρω mixing parameter has the value bρω = (3.5±0.5)10−3

Res. mV , MeV fV , MeV gV →πγ gV →ππ

ρ− 775.3 ± 0.5 151.5 ± 1.5 − 11.50 ± 0.05
ρ0 773.7 ± 0.4 155.4 ± 1.7 0.65 ± 0.05 11.51 ± 0.07
ω 782.43 ± 0.05 45.3 ± 0.9 1.73 ± 0.08 −0.35 ± 0.10
ρ′ 1465 ± 25 − − −
ρ′′ 1700 ± 20 − − −
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The first fitting procedure (Fit I) includes the ρ−, ρ0,
and ω contributions, and neglects the effects of higher reso-
nances. We work in the region

√
s ≤ 0.9 GeV where this ap-

proximation is checked to be self-consistent. The χ2/DOF
for this fit is 75/74 for Fπ and Fγπ. It is 11/23 for F+

π . The
resulting values of the parameters are given in Table 2.

In the second step (Fit II), we study the stability of the
extracted ρ and ω parameters with respect to the inclusion
of higher resonances. This might serve as a probe of the
systematic errors. We still stay in the region

√
s ≤ 0.9 GeV,

but include in addition to ρ and ω also the ρ′ = ρ(1450)
resonance. The contribution of the ρ′ resonance to the
form factors is obtained by adding the ρ′ to the γ–ρ–ω
mixing scheme (Appendix C) and neglecting the effects of
mixing of ρ′ with ρ and ω mesons. The ρ′ mass is fixed
according to PDG [12]. The parameters obtained by this
procedure are given in Table 3. The quality of the fit to Fπ

and Fγπ definitely improves (68/72), whereas for F+
π no

improvement is seen. It is worth noting that the extracted
parameters of the ρ and ω turn out to be very stable with
respect to the inclusion/exclusion of ρ′.

In the third step, we extend our analysis to the region√
s ≤ 1.2 GeV (Fit III). We fit the form factors taking into

account the three resonances ρ,ω, and ρ′ (χ2/DOF = 72/89
for Fπ and Fγπ; χ2/DOF = 13/27 for F+

π ). The results of
this fit are given in Table 4. We then also include in addition
the ρ′′ = ρ(1700). The coupling constants of ρ′ and ρ′′ turn
out to be strongly correlated with each other and therefore
cannot be extracted from the data under consideration.
For a reliable extraction of these parameters one should go
to higher values of s. Important for our analysis is that the
masses and couplings of the ρ and ωmesons are remarkably
stable with respect to inclusion/exclusion of ρ′′ and very
well compatible with the numbers obtained in Fits I and
II. The form factors calculated with the parameters from
Table 4 are shown in Figs. 1, 2, and 3 as solid lines.

The very satisfactory description of the data speaks in
favor of the reliability of our assumptions of the dominance
of the ππ, KK, and 3π intermediate states and on the
negligible s-dependence of the vertex functions.

Note that the masses of the charged and the neutral ρ
mesons are different as obtained by our fits exposing an
isospin violation in ρmesons which is extensively discussed
in the literature (see [31] and references therein).

However we would like to point out that assuming the
parameters of the charged and the neutral ρ mesons to be
equal to each other also leads to a very good description of
the data with χ2/DOF below 1 for all fitting procedures
I-III (Fit I: χ2/DOF = 94/100, Fit II: χ2/DOF = 83/98,
Fit III: χ2/DOF = 86/121). Therefore, strictly speaking,
the data analyzed by us here do not require the masses
and couplings of the charged and neutral ρ mesons to be
different. Still, we do not think it reasonable to take into
account isospin-violating ρ–ω mixing effects and assume
the absence of such effects in the charged and neutral ρ
mesons. We therefore do not discuss in detail the fitting
procedures in which the parameters of the charged and
neutral mesons are assumed to be equal.
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Fig. 1. The pion electromagnetic form factor Fπ(s): a Modulus
squared: data from [14] (empty) used in the fit. Data from [26]
(full) which were not used for the fit are shown for comparison.
b Phase: data from [27]. Solid lines are for the full form factor as
obtained by Fit III, dashed lines for the ρ contribution in (58)

Figure 4 shows the pion form factor at small spacelike
momentum transfers, which was not included in the fit. Still
one can see a good agreement with the data even down to
s = −2 GeV2. The improvement of the description of Fπ

compared to the naive VMD Ansatz (6) shown as a dashed
line is obvious. Similar results were obtained in [5].

Next we study the low energy expansion of the pion
electromagnetic form factor near s = 0:

Fπ(s) = 1 +
1
6
〈r2〉π

V s+ cπV s
2 +O(s3). (65)

Here 〈r2〉π
V is the squared charge radius of the pion. This

quantity and cπV are of great interest in the framework of
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Fig. 2. The weak transition π− → π0 form factor, Fit III.
Data from [13]
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Fig. 3. The cross section σe+e−→πγ(Q2), see (15), calculated
with Fγπ from (59). Data from [16]

ChPT for fixing certain parameters; see for instance [9,32].
In Table 5 we compare our results with those of [9,32] and
the naive VMD. We find full consistency with ChPT within
the errors which for our results are only statistical ones.
Of course a study of systematic errors should also be done,
but this is beyond the scope of this paper.

Finally, let us discuss the ρ and ω masses and the ρ
width. The value of the ρ-meson Breit–Wigner mass defined
according to (47), mρ0 = 773.8± 0.6 MeV, agrees with the
value obtained recently from the weak pion form factor [10],

10
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1

-3 -2 -1 0

s, GeV 2

|F
π|

2

Fig. 4. The pion electromagnetic form factor |Fπ(s)|2 for s < 0.
Data from [29]. Solid line: the full form factor from Fit III,
dashed line: Fπ = 1/(1 − s/m2

ρ)

Table 5. The pion form factor at small momentum transfers.
Coefficients of the expansion (65) from Fit III are given. The
errors given in our results are only statistical emerging from
errors in masses and couplings

〈r2〉π
V , GeV−2 cπ

V , GeV−4

Our result 11.41 ± 0.05 3.83 ± 0.02
ChPT to order O(p6) [32] 11.22 ± 0.41 3.85 ± 0.6
Results from [9] 11.04 ± 0.3 3.79 ± 0.04
Naive VMD (6) 10.16 2.8

and is sizably higher than the value mρ = 771.1±0.9 MeV
quoted by PDG.

The Breit–Wigner width of the ρ meson is defined ac-
cording to the relation [10]

1/ΓBW
ρ = mρ

dδπ(s)
ds

∣∣∣∣
s=m2

ρ

, (66)

where δπ(s) is the phase of the pion form factor F+
π (s).

Numerically, we obtain from Fit III for the charged ρ

ΓBW
ρ = 149.85 ± 0.4 MeV.

Next we turn to the pole masses and widths of the ρ−, ρ0

and ω. For the charged ρ-meson the location of the pole
in the second Riemann sheet of the s-plane is found by
solving the equation

m2
ρ − s−Bρρ(s) = 0. (67)

The corresponding solution, spole, can be used in two dif-
ferent ways to define pole masses and pole widths. Either
we choose to set

spole = M ′2
ρ − iΓ

′pole
ρ M ′

ρ, (68)
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Table 6. Pole masses and widths of ρ and ω

ρ+ ρ0 ω

Mpole, MeV 756.7 ± 0.4 755.0 ± 0.4 782.44 ± 0.05
Γ pole, MeV 144.7 ± 0.4 143.8 ± 0.4 8.38 ± 0.05

or

spole = (Mρ − iΓ pole
ρ /2)2. (69)

The values obtained with the definition (69) are given in
Table 6.

The pole masses of the ρ0 and the ω meson are affected
by the ρ–ω mixing effects and are obtained from (124):{

m2
ρ − s−Bρρ(s)

}{
m2

ω − s−Bωω(s)
}

− {s bρω +Bρω(s)}2 = 0. (70)

The corresponding values of the pole masses and widths
of the ρ0 and ω are also given in Table 6.

6 Conclusions

We have discussed a general approach to the description of
vector mesons and their mixing using dispersion relations.
This approach allows us to represent various observables for
the vector mesons as products of the vector meson propaga-
tor matrix and the reduced amplitudes (vertex functions).
The unitarity relation gives the anti-hermitian part of the
propagator matrix in terms of the relevant reduced ampli-
tudes.

The merit of this approach lies in the possibility to sep-
arate different types of singularities in different quantities:
the propagator matrix of the vector meson fields contains
the resonance poles which lead to “fast” variations of the
form factors in the resonance region, whereas the reduced
amplitudes are free from these singularities and are there-
fore slowly varying functions in the resonance region. The
description is fully general at this stage and contains no
approximations. To go further we need some dynamical
inputs for the reduced amplitudes.

We then formulate our model for the form factors based
on the following assumptions:
(i) we take into consideration the resonances ρ, ω, and
in a rough way also the ρ(1450) and neglect higher vec-
tor mesons;
(ii) we take into account the ππ, KK̄ and effectively also
the 3π intermediate states, and neglect contributions of
multi-meson states in the unitarity relations;
(iii) we assume the scalar coupling factors in the reduced
amplitudes to be constant in the region of the momentum
transfer

√
s = 0–1.2 GeV.

On the basis of these assumptions we perform a com-
bined analysis of the recent data for several reactions:
e+e− → π+π−, τ− → π−π0ντ , and e+e− → π0γ in the
region of

√
s = 0–1.2 GeV. All the analyzed data is well de-

scribed in our approach, allowing for an extraction of the
resonance parameters, such as the Breit–Wigner masses

and effective coupling constants. Our main numerical re-
sults are given in Tables 2–4.

These results are obtained by the fitting procedures,
which allow for different masses and couplings of the char-
ged and the neutral ρ mesons. Therefore, we have fitted
separately the charged-current form factor F+

π and the
neutral-current form factors Fπ and Fγπ. Still we would like
to point out that assuming the equality of the parameters
of the charged and the neutral ρmesons and fitting all three
form factors F+

π , Fπ, and Fγπ simultaneously also leads to
a good description of the data with χ2/DOF below unity.
However since the ρ–ω mixing and the isospin violation in
ρ mesons are effects of the same nature, we do not think
it reasonable to include only the first of these effects. We
therefore do not discuss in detail the hypothesis that the
masses and couplings of charged and neutral ρ mesons
are equal.

The small errors of our results are statistical errors only
indicating a good description of the data by our form factor
formulae. Still our form factors are based on certain model
assumptions; therefore a systematic error should be added.

One way to estimate the systematic error is to vary
the fit range, to choose different parametrizations for the
reduced amplitudes, and to study the corresponding vari-
ations of the fitted quantities. Partially, we did this by
choosing various ranges of s and including higher reso-
nances in our fits. We observed a good stability of the
extracted resonance parameters and therefore do not ex-
pect the systematic error to be large. A more detailed study
of the systematic errors is left for future work.

Further topics to be studied in the future are the in-
clusion of the φ meson in the mixing scheme and the im-
plications of our form factor formulae for the theoretical
values of the g−2 factor of the muon and the fine structure
constant at the Z mass, αs(mZ).

To summarize,we have obtained a very gooddescription
of the form factors in a model based on the unitarity and
dispersion relations. Chiral perturbation theory constraints
were checked to be respected. We have introduced reduced
amlitudes or vertex functions which describe the coupling
of the photon γ and of the vector meson ρ andω fields to two
pseudoscalar mesons and to πγ. These vertex functions con-
tain invariant coupling functions which in principle depend
on the momentum transfer

√
s. Perhaps the most interest-

ing result of our study is that these invariant coupling func-
tions are really coupling constants for 0 ≤ √

s ≤ 1.0 GeV.
Thus these couplings are “frozen” below the GeV scale.
This may perhaps be related to the expectation mentioned
frequently in the literature [33] that in QCD the coupling
parameter αs(µ2) is “frozen” for µ2 ≤ 1 GeV2.
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Appendix

A Gauge invariance
and properties of the matrices M2 and K

Here we study the conditions to be imposed on the prop-
agator matrix (20) arising from the requirements to have
a massless photon, the correct charge normalization, and
no strong-interaction long-range force. This leads to the
following constraints at q2 → 0:

∆
(1,1)
T (q2) =

1
q2
(
1 +O(q2)

)
, (71)

∆
(i,j)
T (q2) = O(1), for (i, j) 
= (1, 1). (72)

These conditions require the matricesM2 andK to satisfy

M2
1j = 0, for j = 1, . . . , n, (73)

K11 = 1. (74)

To show this, we note first that by a transformation of
the type (40), but involving only V (j)

µ with j > 1, we can
always achieve

M2
1j = 0, for j > 2. (75)

Then the matrix M2 takes the form

M2 =




M2
11 M

2
12 0 . . . 0

M2
12

0
. M2′

0


 , (76)

where

M2′
=


M2

22 . . . M
2
2n

. . . . .

M2
n2 . . . M

2
nn


 . (77)

For n > 2 we define

M2′′
=


M2

33 . . . M
2
3n

. . . . .

M2
n3 . . . M

2
nn


 , (78)

and for n = 2 we set M2′′
= 1.

In the following we assume that M2′
is a positive-

definite matrix. This means, for instance, that all fields
V

(j)
µ , j = 2, . . . , n must be independent.

From (38) and (76) we find now for q2 → 0

det∆−1
T (q2) = (−1)ndetM2 +O(q2) (79)

= (−1)n
[
M2

11detM2′ − (M2
12
)2

detM2′′]
+O(q2),

∆
(1,1)
T (q2) =

det (−M2′
) +O(q2)

det∆−1
T (q2)

=
−detM2′

+O(q2)
detM2 +O(q2)

, (80)

∆
(1,2)
T (q2) =

(−1)nM2
12detM2′′

+O(q2)
det∆−1

T (q2)

=
M2

12detM2′′
+O(q2)

detM2 +O(q2)
. (81)

We see now from (80) that in order to fulfill (72) we must
have detM2 = 0. Then (72) for (i, j) = (1, 2) and (81)
require M2

12 = 0. Combining this result with (79) gives
M2

11 = 0. Recall that we assumed M2′
> 0 which implies

also M2′′
> 0. Thus, we have already demonstrated (73).

Inserting now (73) into (38) gives

det∆−1
T (q2) = (−1)n−1q2K11detM2′

+O
(
(q2)2

)
. (82)

With (80) this leads to

∆
(1,1)
T (q2) =

(−1)n−1detM2′
+O(q2)

(−1)n−1q2K11detM2′ +O ((q2)2)

=
1

q2K11

(
1 +O(q2)

)
. (83)

To fulfill (72) we must, therefore, have K11 = 1 which
proves (74).

B The inverse propagator matrix
for the γ–ρ–ω system

Given (48), the inverse propagator (38) for the γ–ρ–ω sys-
tem can be written as

∆−1
T (s) = −


0 0 0

0 m2
ρ 0

0 0 m2
ω


+ sK

+s2
1
π

∞∫
4m2

π

ds′ DT(s′)
s′2(s′ − s− iε)

. (84)

Here we set q2 = s and DT(s′) is obtained using Assump-
tions 1 and 2 of Sect. 4 and (35).

It is convenient to split the constant matrix K into
two parts

K = Ka +Kb, (85)

to be specified later, and to define the matrix function

B(s) = sKa + s2
1
π

∞∫
4m2

π

ds′ DT(s′)
s′2(s′ − s− iε)

. (86)

We thus have

1
2i
{
B(s) −B†(s)

}
= DT(s). (87)



D. Melikhov et al.: Masses and couplings of vector mesons from pion form factors 357

The matrix Ka will be chosen such that it cancels the real
part of the dispersive contribution to B(s) in (86) at some
specific values of s. Then splitting the matrix K according
to (85) has an unambiguous physical meaning.

We choose Ka
γγ = 0. With this, the condition (45)

requires Kb
γγ = 1.

The diagonal elements Ka
V V , V = ρ, ω, are chosen such

that they cancel the real part of the dispersive contribu-
tion in (86) at s = m2

V for the vector meson V . That is,
we require

ReBρρ(m2
ρ) = 0, ReBωω(m2

ω) = 0. (88)

The normalizations for the ρ and ω fields are fixed by
requiring (48). Given (88), this requirement leads to

Kb
ρρ = Kb

ωω = 1. (89)

The non-diagonal matrix elements (Ka)γV are chosen
to cancel the real part of the dispersive contribution to
BγV at the point s = m2

V . That is, we require

ReBγρ(m2
ρ) = 0, ReBγω(m2

ω) = 0. (90)

Now we set

(Kb)γV = e
fV

mV
, (91)

where the real parameters fV correspond to our precise
definitions of the leptonic decay constants of the vector
mesons V = ρ, ω.

Finally, the matrix element (Ka)ρω is chosen such that
it cancels the real part of the dispersive contribution to
Bρω in (86) at the point s = m2

ρ. Thus we require

ReBρω(m2
ρ) = 0. (92)

Then the element

(Kb)ρω = bρω (93)

defines our ρ−ωmixing parameter. Clearly the value of the
mixing parameter depends on the choice of the subtraction
point in (92), but the physics, of course, does not.

Let us now discuss in more detail each of the functions
Bij(s) of (86).

B.1 Bρρ

The function ImBρρ receives contributions from the π+π−,
K+K− and K0K̄0 intermediate states. The two-pion con-
tribution to ImBρρ reads

Im Bρρ(s)|ππ = g2
ρ→ππIm Bππ(s), (94)

where

Im Bππ(s) = I(s,m2
π),

I(s,m2) =
1

192π
s

(
1 − 4m2

s

)3/2

θ(s− 4m2). (95)

We have to take into account also the K+K− and K0K̄0

intermediate states which give contributions similar to (94)
and (95) with π replaced by K. The coupling constant
gρ→KK cannot be measured directly so we use the flavor-
SU(3) relations (52)

2gρ→KK = gρ→ππ. (96)

Then we find

Im Bρρ(s)

= g2
ρ→ππ

[
Im Bππ +

1
4

(Im BK+K− + Im BK0K̄0)
]

= g2
ρ→ππ

[
Im Bππ +

1
2
Im BKK

]
. (97)

As explained above, see (88), we require

Re Bρρ(m2
ρ) = 0. (98)

Putting everything together we find from (86)

Bρρ(s) = g2
ρ→ππ s

×
[
R(s,m2

π) −R(m2
ρ,m

2
π) +

R(s,m2
K) −R(m2

ρ,m
2
K)

2

]

+ ig2
ρ→ππ

[
I(s,m2

π) +
I(s,m2

K)
2

]
. (99)

Here I(s,m2) is defined in (95), and

R(s,m2) =
s

192π2 V.P.
∫ ∞

4m2

ds′

(s′ − s)s′

(
1 − 4m2

s′

)3/2

=




1
96π2

(
1
3 + ξ2 + ξ3

2 log
(

1−ξ
1+ξ

))
, ξ =

√
1 − 4m2

s ,

for s > 4m2,
1

96π2

(
1
3 − ξ2 + ξ3 arctan

(
1
ξ

))
, ξ =

√
4m2

s − 1,

for 0 < s < 4m2,
1

96π2

(
1
3 + ξ2 + ξ3

2 log
(

ξ−1
ξ+1

))
, ξ =

√
1 − 4m2

s ,

for s < 0,

(100)

where V.P. means the principle value.

B.2 Bωω

When considering the Bωω, the contributions of the in-
termediate K+K−, K0K̄0, and 3π states should be taken
into account.

First, recall that the coupling constant gω→3π is much
smaller than the coupling constant gω→KK . This becomes
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clear by using the SU(3) relation gω→KK = 1
2gρ→ππ. There-

fore, the contribution of the 3π intermediate states can be
safely neglected in the real part of Bωω.

However, the decay ω → KK̄ is forbidden kinemati-
cally. Due to this, the ω width emerges mainly due to the
3π intermediate states and is small because gω→3π is small.
Therefore, the 3π states are crucial for the calculation of
the imaginary part of Bωω below the KK̄ threshold. Still,
the s-dependence of Im Bωω can in practice be neglected,
and we may therefore use for it a constant width approx-
imation: Γω = const. Taking into account that Bωω = 0
for s = 0, see (54), and making use of (88), we can write
with sufficient accuracy for our purposes

Bωω(s) = g2
ω→KK s

[
R(s,m2

K) −R(m2
ω,m

2
K)
]

+iΓωs/mω. (101)

B.3 Bγρ

The function ImBγρ receives contributions from the π+π−
and K+K− intermediate states. Taking into account the
SU(3) relations (52) between the coupling constants we find

Im Bγρ = 2 e gρ→ππ

(
Im Bππ +

1
2
Im BK+K−

)

= 2 e gρ→ππ

(
Im Bππ +

1
2
Im BKK

)
, (102)

and hence from (99)

Im Bγρ(s) =
2 e

gρ→ππ
Im Bρρ(s). (103)

With the conditions (88) and (90) we get also

Bγρ(s) =
2 e

gρ→ππ
Bρρ(s). (104)

B.4 Bγω

The function ImBγω receives contributions from the
K+K− intermediate states:

Im Bγω = 2egω→KKIm BK+K− . (105)

Requiring (90) we come to the expression

Bγω(s) = 2egω→KK s
[
R(s,m2

K) −R(m2
ω,m

2
K)
]

+2iegω→KK I(s,m2
K). (106)

B.5 Bρω

The imaginary part of Bρω is given by the ππ intermediate
states, so we have

Im Bρω(s) = gρ→ππgω→ππIm Bππ(s). (107)

Making use of (92), Bρω takes the form

Bρω(s) = gρ→ππgω→ππ (108)

× [sR(s,m2
π) − sR(m2

ρ,m
2
π) + iI(s,m2

π)
]
.

This completes our discussion of the individual functions
Bij(s). The resulting inverse propagator matrix is given
in (53). For comparison with (38) we also list the resulting
matrix elements of K

Kγγ = 1,

Kρρ = 1 − g2
ρ→ππ

[
R(m2

ρ,m
2
π) +

1
2
R(m2

ρ,m
2
K)
]
,

Kωω = 1 − g2
ω→KKR(m2

ω,m
2
K), (109)

Kγρ = Kργ

= e
fρ

mρ
− 2egρ→ππ

[
R(m2

ρ,m
2
π) +

1
2
R(m2

ρ,m
2
K)
]
,

Kγω = Kωγ = e
fω

mω
− 2egω→KKR(m2

ω,m
2
K),

Kρω = Kωρ = bρω − gω→ππgρ→ππR(m2
ρ,m

2
π),

with the functions R given in (100).
Using the values for the masses and coupling constants

from Fit III, we find the following central values for Kij :
Kρρ = 1.017, Kωω = 0.994, Kρω = 2.6 · 10−3, Kγρ = 0.2 e,
Kγω = 0.06 e, e =

√
4παe.m. 	 1/3. Clearly, the deviation

of the matrix K from the 3 × 3 unit matrix is small: only
at the percent level.

Finally, we discuss the relation of our expressions to the
original Gounaris–Sakurai expression for the form factor.
The formula given in (11) of [3] can be written as

FGS
π (s) =

m2
ρ + dmρΓ

GS
ρ

m2
ρ − s−BGS

ρρ (s)
, (110)

where

BGS
ρρ (s) = −ΓGS

ρ

(
m2

ρ

k3
ρ

)

×{k2[h(s) − h(m2
ρ)] + k2

ρh
′(m2

ρ)(m
2
ρ − s)

}
+imρΓ

GS
ρ (k/kρ)

3
mρ/

√
s, (111)

k =

{ ( 1
4s−m2

π

)1/2 for s ≥ 4m2
π,

i
(
m2

π − 1
4s
)1/2 for 0 ≤ s < 4m2

π,
(112)

d =
3
π
m2

π

k2
ρ

log
(
mρ + 2kρ

2mπ

)
+

mρ

2πkρ
− m2

πmρ

πk3
ρ

,

(113)

h(s) =
2
π
k√
s

log
(√

s+ 2k
2mπ

)
. (114)

The only free parameters in the GS formula are mρ and
ΓGS

ρ . It is easy to see that the following relations hold:

ReBGS
ρρ (m2

ρ) = 0,
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d
ds

ReBGS
ρρ (s)|s=m2

ρ
= 0,

BGS
ρρ (0) = −dmρ Γ

GS
ρ . (115)

This proves (7) and (8). Comparing (111) to (95) and (100)
and setting

ΓGS
ρ = g2

ρ→ππ

1
24π

k3
ρ

m2
ρ

(
1 − BGS

ρρ (0)
m2

ρ

)
, (116)

we obtain

BGS
ρρ (s) =

(
1 − BGS

ρρ (0)
m2

ρ

)
B̃ρρ(s) − BGS

ρρ (0)
m2

ρ

(s−m2
ρ),

FGS
π (s) =

m2
ρ

m2
ρ − s− B̃ρρ(s)

. (117)

Here B̃ρρ(s) is defined as our Bρρ(s) in (99) but omitting
the KK̄ contributions.

To compare the GS with our expression it is best to
choose F+

π (s) (62) since no ω contributions are included
in (117). Clearly, also the KK̄ contributions are not in-
cluded in (117), but one could easily do so replacing B̃ρρ(s)
by the full Bρρ(s). The remaining difference between (117)
and (62)– (64) is in the s-dependence of the effective ρ–γ
coupling. The GS formula would correspond to the relation

1
2
gρ→ππ

fρ

mρ
= 1. (118)

Using the ρ− parameters from our Fit III gives, however,

1
2
gρ→ππ

fρ

mρ
= 1.12 ± 0.05. (119)

C Propagator matrix and form factors

In this appendix we give the derivation of the expres-
sions (58), (59), and (62) for the form factors. We start
with writing the inverse propagator matrix (53) as follows:

∆−1
T (s) =

(
s 0
0 ∆̃−1(s)

)
+ e s

(
0 GT

γ→V

Gγ→V 0

)
,

(120)

where

∆̃−1(s) =

(
−m2

ρ + s+Bρρ(s) s bρω +Bρω(s)
s bρω +Bρω(s) −m2

ω + s+Bωω(s)

)

and

Gγ→V =

(
fρ

mρ
+ Bγρ

e s
fω

mω
+ Bγω

e s

)
. (121)

The transverse propagator to order e then reads

∆T(s) =

{
1 + e

(
0 GT

γ→V

s∆̃(s)Gγ→V 0

)}−1(
1/s 0
0 ∆̃(s)

)

=

(
1/s −eGT

γ→V ∆̃(s)
−e∆̃(s)Gγ→V ∆̃(s)

)
+O(e2), (122)

∆̃(s) = (det ∆̃−1(s))−1 (123)

×
(

−m2
ω + s+Bωω(s) −s bρω −Bρω(s)

−s bρω −Bρω(s) −m2
ρ + s+Bρρ(s)

)
,

det ∆̃−1(s) = (−m2
ω + s+Bωω(s))(−m2

ρ + s+Bρρ(s))

−(s bρω +Bρω(s))2. (124)

The pole masses and the pole widths of the ρ0 and ω are
obtained as solutions of

det∆−1
T (s) = s · det ∆̃−1(s) = 0. (125)

To obtain the expression for the electromagnetic form factor
we use now (2), (57), (30), and (31). This gives with q =
p+ p′, s = (p+ p′)2 = q2

e(p′ − p)µFπ(q2)

= 〈π+(p′)π−(p)|Jµ(0)|0〉
= 〈π+(p′)π−(p)|Aν(0)|0〉 (−gµνq

2 + qµqν
)

= 〈π+(p′)π−(p)||V (i)λ(0)||0〉
×∆(i,1)

λν (q)
(−δν

µq
2 + qνqµ

)
= 〈π+(p′)π−(p)||V (i)λ(0)||0〉∆(i,1)

T (s)
(
gλµq

2 − qλqµ
)

= 〈π+(p′)π−(p)||V (i)
Tµ (0)||0〉 s∆(i,1)

T (s) (126)

Inserting here (49), (50) and (122) leads to

Fπ(s) = 1 − sGT
V →ππ∆̃(s)Gγ→V , (127)

where

GV →ππ =
( 1

2gρ→ππ
1
2gω→ππ

)
. (128)

Wecan further simplify the expression forFπ in (127) taking
into account that gω→ππ is much smaller than gρ→ππ, and
that the ρω mixing parameter is also small as becomes
apparent from the fit. From (124) and (108) we get then

det ∆̃−1(s) = (−m2
ω + s+Bωω(s))(−m2

ρ + s+Bρρ(s))

+O(g2
ω→ππ, b

2
ρω, gω→ππbρω). (129)

For Fπ(s) of (127) this gives

Fπ(s) = 1 +
1
2
gρ→ππ

fρ

mρ
s+ 1

eBγρ(s)

m2
ρ − s−Bρρ(s)
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+
1
2
gρ→ππ

(
fω

mω
s+ 1

eBγω(s)
)

(sbρω +Bρω(s))(
m2

ρ − s−Bρρ(s)
)
(m2

ω − s−Bωω(s))

+
1
2
gω→ππ

fω

mω
s+ 1

eBγω(s)
m2

ω − s−Bωω(s)

+ O(g2
ω→ππ, b

2
ρω, gω→ππbρω). (130)

In a similar way we get for the γπ transition form factor (14)

Fγπ(s) = Fγπ(0) − sGT
V →πγ∆̃(s)Gγ→V , (131)

with Fγπ(0) given by the anomaly (16) and

GV →πγ =

(
gρ→πγ

mρ
gω→πγ

mω

)
. (132)

Expanding in gω→ππ and bρω gives

Fγπ(s) = Fγπ(0) +
gρ→γπ

mρ

fρ

mρ
s+ 1

eBγρ(s)

m2
ρ − s−Bρρ(s)

+
gω→γπ

mω

fω

mω
s+ 1

eBγω(s)
m2

ω − s−Bωω(s)

+
sbρω +Bρω(s)(

m2
ρ − s−Bρρ(s)

)
(m2

ω − s−Bωω(s))

×
[
gρ→γπ

mρ

(
fω

mω
s+

1
e
Bγω(s)

)

+
gω→γπ

mω

(
fρ

mρ
s+

1
e
Bγρ(s)

)]

+ O(g2
ω→ππ, b

2
ρω, gω→ππbρω). (133)

The weak form factor (13), F+
π , is obtained from (130)

setting gω→ππ = 0 and bρω = 0. This gives

F+
π (s) =

1
m2

ρ − s−Bρρ(s)
(134)

×
(
m2

ρ − s+
1
2
gρ→ππ

fρs

mρ
−Bρρ(s) +

gρ→ππ

2e
Bγρ(s)

)
.

Using now (104) leads to (62).
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